
Virtual Reality &
Physically-Based Simulation
Interaction Metaphors

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 10Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The First(?) Interactive Computer Program

§ First really interactive, real-time
computer game (arguably):

§ Spacewar, 1961, MIT

§ Two players, two spaceships
("wedge" and "needle"), each
can fire torpedos

§ With it came the first real
interaction devices and
metaphors

G. Zachmann 11Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

A Classification of Interaction Tasks

§ Basic interaction tasks (BITs) in 2D GUIs [Foley / vanDam]:

§ Selection (objects, menus, ..)

§ Positioning (incl. orientation) or manipulation

§ Entering quantities (e.g., numbers)

§ Text input (via keyboard or speech input)

§ Universal Interaction Tasks (UITs) in VEs [Bowman]:

1. Navigation = change of viewpoint

2. Selection = define object or place for next task

3. Manipulation = grasp, move, manipulate object

4. System control = menus, widgets sliders, number entry, etc.

§ Model and modify geometry (very rare; not in Bowman's UITs)

G. Zachmann 12Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

More , Non-UIT Interaction Tasks

§ Search

§ E.g., searching a scene for a specific object, excluding the navigation

§ Ambient, implicit, playful, non-purposeful interaction

§ E.g., playing around with a virtual spraying can

§ Sculpting / modeling surfaces

§ Making an avatar dance by whole body interaction

G. Zachmann 13Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Digression: Classification of Widgets for 3D UIs

Menu Selection

Temporary Option Menus

Rotary Tool Chooser

Menu Ball

Command & Control Cube

Popup Menu

Tool Finger

TULIP

Single Menus

Ring menu

Floating Menu

Drop-Down-Menu

Revolving Stage

Chooser Widget

3D-Palette, Primitive Box etc.

Menu Hierarchies

Hands-off Menu

Hierarchical Pop-Up Menus

Tool Rack

3D Pie Menu

à Hierarchy Visualizations

Direct 3D Object Interaction

Object Selection

Geometric Manipulation

3D-Scene Manipulation

Orientation and Navigation

Scene Presentation Control

Exploration and Visualization

Geometric Exploration

Hierarchy Visualization

3D Graph Visualization

2D-Data and Document Visualization

Scientific Visualization

System / Application Control

State Control / Discrete Valuators

Continuous Valuators

Special Value Input

Menu Selection

Containers

G. Zachmann 14Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Design of User Interfaces

§ There are two main approaches:
§ Natural interaction:

- Try to resemble reality and the interaction with it as closely as possible

§ "Magic" interaction
- Give the user new possibilities beyond reality

- Challenge: keep the cognitive overhead as low as possible, so that users
don't get distracted from their task!

§ Tools:
§ Direct user action (e.g., tracking of the body, gesture, head turning, ...)

- Pro: well suited if intuitive; con: possibilities are somewhat limited

§ Physical devices (e.g., steering wheel, button, ...)
- Pro: haptic feedback affords precise control

- Con: not easy to find/devise novel & useful devices

§ Virtual devices (e.g., menus, virtual sliders, etc., embedded in the VE)
- Pro: very flexible, reconfigurable, "anything goes"

- Con: can be difficult to use because of lack of force feedback

G. Zachmann 15Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Goals (in particular in VR):

1. Intuitive / natural interaction (usability)

- By definition: easy to learn

- Adjust to the user's expertise (expert vs. novice)

2. Efficient interaction (user performance)

- Precision, speed, productivity of the users

§ Problems (especially in VR):

§ No physical constraints (interaction in mid-air)

§ In particular: no haptic feedback

§ Efficient interaction with objects outside of the user's reach

§ Noise / jitter / imprecision in tracking data

§ Fatigue

§ No standards

There has never been a
high performance task
done in the history of this
planet, to the best of my
knowledge, that has ever
been done well with an
intuitive interface.

[Brian Ferran]

G. Zachmann 17Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Pose Recognition

§ Is basically a simple classification problem:

§ Given: a flex vector = joint angles

§ Wanted: pose

§ Wanted: an algorithm that is ...

§ .. user independent

§ .. robust (> 99%)

§ .. Fast

§ General solution: machine learning algorithms (e.g, neural network)

G (x) 2 {“Fist“, “Hitch-hike“ , . . . }
x 2 Rd , d ⇡ 20

G. Zachmann 23Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

An Extremely Simple Pose Recognition Algorithm

§ Neural network is fine, if lots of gestures, or some of them are inside
the parameter space

- However, experience shows: users can remember only a small set (e.g. 5)

§ Consider only a few poses near the border of parameter space
§ Discretize the flex vector

0 = flex value is "somewhere in the middle"

§ Pose = a region of d-dimensional parameter cube

§ Represent each region/pose by a discrete vector:

0 = don't care

§ Recognize f as pose i ⟺ f' "matches" gi

⟺
and ignore those f'[j] where g[j] = 0

Region of one gesture

8j : f 0[j] = g [j]

G. Zachmann 24Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Implementation details:

§ Do automatic calibration at runtime to fill the range [0,1]:

- Maintain a running min/max and map it to [0,1]

- Over time, shrink min/max gradually (for robustness against outliers)

§ Ignore transitory gestures

§ Dynamic gestures =

1.Sequence of static poses/postures (e.g., sign language)

2.Path of a finger / hand

§ Utility for VR?

G. Zachmann 25Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Navigation

§ Comprises: Wayfinding & Locomotion

§ Locomotion / Travel =

§ Cover a distance (in RL or in VR)

§ Maneuvering (= place viewpoint and/or viewing direction exactly)

§ Wayfinding =

§ Strategy to find a specific place (in an unknown building / terrain)

§ Comprises: experience, cognitive skills, ...

G. Zachmann 26Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

How do People Solve a Wayfinding Task

§ How do people find their way:
§ Natural hints/clues

§ Signs (man-made)

§ A simple user model for way finding:

§ In VEs, there can be two kinds of wayfinding aids:
§ Aids for improving the user's performance in the virtual environment

§ Aids that help increase the user's performance later in the real world
(i.e., that increase the training effect)

Which direction could bring
me closer to my goal?

Travel some distance

Where am I?
(possibly?)

Creation of a
mental map

G. Zachmann 27Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Question: do humans create a mental map of their environment
in order to solve wayfinding tasks?

§ Answer: probably yes, but not like a printed street map;
rather like a non-planar graph that stores edge lengths

http://w
w

w
.spiegel.de/w

issenschaft/technik/0,1518,739416,00.htm
l

Kerstin Schill, Neuro-Informatics, Uni Bremen

G. Zachmann 28Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Techniques for Navigation in VEs

§ A.k.a. "viewpoint control"

§ Real user navigation, e.g., walking, turning head, ...

§ Point-and-fly (especially in Caves and HMDs)

§ Walking in place

§ Scene-in-hand

§ World-in-Miniature

§ Orbital mode

§ And some more ...

G. Zachmann 29Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

A Taxonomy for this Interaction Task

§ Taxonomies are a technique to explore the design space of an
interaction task!

Navigation

Specify
direction/target

Specify
speed/accel.

Condition that
elicits navigation

Viewing direction

Pointing direction

Pointing in 2D

Constant
Gesture based
Explicit
Automatic

Incremental

Continuous mode

Start/stop

Automatischer Start/Stop

Hand
Other object

Flex value
Hand position

Speech
Gesture

Bicycle

Discretely
Lists (Menus)

Objects in VE

G. Zachmann 30Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Note on Interaction Task vs. Interaction Metaphor

Interaction Task Interaction
Devices

Interaction Metaphor

Define scaling on
tablet (e.g., for photo)

Touch screen Pinch gesture

Define position on
screen of desktop PC

Mouse Move mouse on table, watch
mouse pointer on screen, click

Start a timer Hour glass Turn hour glass

Change gears in car Pedals and
gear stick

First, push left pedal, move gear
stick in desired position, release
left pedal slowly

Switch room lights Microphone Clap hands three times

G. Zachmann 31Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Interaction Design Principle: Separating DOFs

§ Here, by the example of the Rotate-Pan-Zoom technique
(a.k.a. Rotate-Scale-Translate):

J. Jankowski & M. Hachet / A Survey of Interaction Techniques for Interactive 3D Environments

Figure 2: Rotating, panning, and zooming are the primary camera movements used in almost every 3D modelling environments.

2.1. General Movement (Exploration)

As we already mentioned, in an exploratory movement (such
as walking through a simulation of an architectural design),
the user does not have any specific goal. Its purpose is to
rather gain knowledge of the environment. We classify it into
the following groups:

2.1.1. Rotate-Pan-Zoom

Rotating, panning, and zooming are the primary camera
movements used in almost every 3D modelling environ-
ments (from Jack [PB88] to Autodesk’s 3ds Max, Maya,
or Blender). They are standard ways to inspect objects, and
work well with a pointing device such as a mouse since all
of them are at most 2-dimensional operations.

• Rotate (also referred to as Tumble or Sweep) - refers to or-
biting the camera around a central point in any direction
- the sweep operation sweeps the camera around horizon-
tally and vertically on a virtual spherical track, keeping it
focused at the same reference point (see Figure 2 (a)).

• Pan - in the context of 3D interaction, Pan refers to trans-
lation of the camera along x and y axes (see Figure 2 (b));

• Zoom (also referred to as Dolly) - refers to translation of
the camera along its line of sight (see Figure 2 (c)).

For example, to navigate in the viewport in Blender, the user
needs to drag the mouse while holding the Middle Mouse
Button (MMB) pressed to rotate, additionally pressing the
Shift button on the keyboard to pan (Shift MMB), and hold-
ing the Ctrl button to zoom (Ctrl MMB). It is worth to
mention that some applications (including e.g., VRML/X3D
viewers) additionally implement Look Around technique that
changes the orientation of the camera but keeps it at a fixed
position.

Current 3D rotation interaction techniques are generally
based on the Chen et al.’s work on Virtual Sphere [CMS88]
and Shoemake’s ArcBall [Sho92], the techniques designed
for 3D navigation around 3D objects. Both techniques are
based on a concept of a virtual ball that contains the ob-
ject to manipulate. They utilize the projection of the mouse
location onto a sphere to calculate rotation axis and angle.
Comparison of mouse-based interaction techniques for 3D
rotation can be found in [HTP⇤97, BRP05].

Rotate-Pan-Zoom technique requires the user to accom-
plish a movement by shifting back and forth among simple
navigation modes (assigning the mouse to "Rotate", "Pan",
or "Zoom" operations) [PB88]. Such interaction model can
be not optimal if the menu has to be used frequently. To solve
this problem, Zeleznik and Forsberg [ZF99] proposed gestu-
ral interaction for invoking camera functionality. Their ap-
proach, called UniCam, requires only a single-button mouse
to directly invoke specific camera operations within a sin-
gle 3D view; remaining mouse buttons can be used for other
application functionality.

Zeleznik et al. [ZFS97] explored a range of interaction
techniques that use two hands to control two independent
cursors to perform operations in 3D desktop applications.
The authors presented both how to navigate (Rotate-Pan-
Zoom and flying techniques) and manipulate (Rotate-Scale-
Translate) 3D objects using two pointer input. Balakrishnan
and Kurtenbach [BK99] also investigated bimanual camera
control; they explored the use of the non-dominant hand to
control a virtual camera while the dominant hand performs
other tasks in a virtual 3D scene.

2.1.2. Screen-Space Methods

Gleicher and Witkin [GW92] describe a body of techniques
for controlling the movement of a camera based on the
screen-space projection of an object, where the user indi-
cates the desired position of the object on the screen. In the
other words, the presented through-the-lens techniques per-
mit the user to control the virtual camera by directly manip-
ulating the image as seen through the lens.

Inspired by Gleicher and Witkin’s work [GW92] and 3D
navigation with multiple inputs [ZFS97, BK99], Reisman
et al. [RDH09] describe a screen-space method for multi-
touch 3D interaction. Just like 2D multi-touch interfaces al-
low users to directly manipulate 2D contexts with two or
more points, their method allow the user to directly manipu-
late 3D objects with three or more points (see Figure 3). The
idea is that each contact point defines a constraint which en-
sures the screen-space projection of the object-space point
"touched" always remains underneath the user’s fingertip.
Walther-Franks et al. [WFHM11] addressed the same prob-
lem and designed and implemented multi-finger mappings

c� The Eurographics Association 200x.

Rotate Pan Zoom

G. Zachmann 32Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

An Abstract Representation of the User

§ User = head, hand,
perhaps whole body (avatar)

§ The "flying carpet" metaphor :

§ User = camera

§ Camera is placed on a carpet / cart / wagon

§ Representation as (part of) a scenengraph:
root

cart

scaled cart
app.
spec.

left
hand

right
hand

camera

viewpoint

menus,
heads-up

infos, ...

rest of
the world

G. Zachmann 33Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Point-and-Fly Metaphor

§ Controlling sensors:

§ Head sensor → viewpoint

§ Hand sensor → moves cart:

s = speed,
t = direction, e.g., pointing direction of hand tracking sensor

§ Generalization: use graphical objects instead of sensor to derive
translation direction (e.g., controller)

§ Specification of the speed:

§ Constant (e.g. with Boom)

§ Flexion of the thumb

§ Depending on distance |hand – body|

§ Make it independent of framerate
slow normal fast

root

cart

rest of
the world

handviewpoint
M t

C = M t�1
C ·Transl(s ·t)

G. Zachmann 34Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Perception of the Distance Travelled in VR

§ Question: how can the sense of presence be increased while
navigating in a VE? (using point-and-fly)

§ Idea:

§ Make the viewpoint oscillate like in reality

§ (First-person-shooter games invented this earlier ;-))

§ Results:

§ Only vertical oscillation helps increase presence

§ Users prefer slight oscillation over no oscillation

§ Short "travel distances" can be estimated more precisely (~ factor 2)

G. Zachmann 35Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Scene-in-Hand / Eyeball-in-Hand Metaphor

§ Scene-in-hand:

§ "Grabbing the air" technique

§ Cart remains stationary, scene gets rotated by
hand sensor about a specific point in space

§ The transformation:

§ Instead of user's hand, use specific device,
e.g. the CAT

§ Eyeball-in-hand:

§ Viewpoint is controlled directly by hand

§ Can be absolute or relative (accumulating)
mode

root

cart

handviewpoint

root

cart

rest of
the world

handviewpoint

M t
W

M t
W = M t

H ·(M
t0
H)

�1 ·M t0
W

G. Zachmann 36Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Two-Handed Navigation (a.k.a. 3D Multitouch)

§ Question: how to navigate with both hands?

§ Goals: increase input bandwidth, use simple input devices,

§ Idea: we only need 2 points and 1-2 triggers (→ pinch gloves)

§ Idea: use and modify "scene-in-hand" technique

§ 1 trigger, 1 moving point → translate the scene

§ 2 trigger, 1 fixed point , 1 moving point → rotate the scene

§ 2 trigger, 2 Punkte bewegt → scale the scene

§ Not well-established in VR (probably because
pinch gloves have not prevailed)

§ But: is the standard today on handhelds! ;-)

§ Variation:

§ Direction = vector between both hands

§ Speed = length of vector

G. Zachmann 37Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

SmartScene, MultiGen, Inc.

G. Zachmann 38Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

G. Zachmann 39Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Real Walking on a Map

§ Idea: project a scaled down version
of the VE on the floor (map) and use feet

§ Coarse navigation: teleportation →
user walks to the new place/viewpoint
on the map and triggers teleportation

§ System commands involved:

1.Bring up map = look at floor + trigger

2.Teleportation = look at floor + trigger

3.Dismiss map = look up + trigger

§ Trigger = speech command or "foot gesture"

§ Accurate navigation:
"lean" towards desired direction;
speed = leaning angle

G. Zachmann 40Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Walking in Place (WIP)

§ The technique:

§ Head of user is tracked (optical tracker, or accelerometer) ⟶ time series

§ Classifier recognizes walking pattern in time series (and speed)

§ Cart is moved in gaze direction

§ Only forward direction is possible

§ Extension: TILT-WIP

§ WIP pattern just provides triggers

§ Tilting angle of head provides navigation direction (omnidirectional)

§ Can increase the level of subjective presence in the VE

§ Reason is probably that proprioceptive information from human body
movements better matches sensory feedback from the computer-
generated displays

§ Works only, of course, with a virtual ground (terrain, etc.)

G. Zachmann 41Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Detecting the Walking Motion

§ Simple thresholding of
accelerometer data from head

§ Project acceleration onto
vertical axis

§ Step := acceleration > threshold

§ More sophisticated thresholding:

§ Every ½ second, calculate
min/max over last ½ sec of data

§ At the same time, calculate
threshold ! = (max + min) / 2

§ With every new sample ai, check

� step detected

2 Analog Dialogue 44-06, June (2010)

Algorithm
Steps Parameter
Digital Filter: First, a digital filter is needed to smooth the signals
shown in Figure 3. Four registers and a summing unit can be
used, as shown in Figure 4. Of course, more registers could be
used to make the acceleration data smoother, but the response
time would be slower.

DATA0 DATA1 DATA2 DATA3DATA IN

FILTER OUT

Figure 4. Digital filter.

Figure 5 demonstrates the filtered data from the most active axis
of a pedometer worn by a walking person. The peak-to-peak value
would be higher for a runner.

0.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0 1 2 3 4 5

A
C

C
EL

ER
A

TI
O

N
 (g

)

TIME (Seconds)

MINIMUM

THRESHOLD
MAXIMUM

FILTERED DATA

Figure 5. Filtered data of the most active axis.

Dynamic Threshold and Dynamic Precision: The system continuously
updates the maximum and minimum values of the 3-axis
acceleration every 50 samples. The average value, (Max + Min)/2,
is called the dynamic threshold level. For the following 50 samples,

this threshold level is used to decide whether steps have been
taken. As it is updated every 50 samples, the threshold is dynamic.
This choice is adaptive and fast enough. In addition to dynamic
threshold, dynamic precision is also used for further filtering as
shown in Figure 6.

A linear-shift-register and the dynamic threshold are used to
decide whether an effective step has been taken. The linear-
shift-register contains two registers, a sample_new register and
a sample_old register. The data in these are called sample_new
and sample_old, respectively. When a new data sample comes,
sample_new is shifted to the sample_old register unconditionally.
However, whether the sample_result will be shifted into the
sample_new register depends on a condition: If the changes in
acceleration are greater than a predefined precision, the newest
sample result, sample_result, is shifted to the sample_new register;
otherwise the sample_new register will remain unchanged. The
shift register group can thus remove the high-frequency noise and
make the decision more precise.

A step is defined as happening if there is a negative slope
of the acceleration plot (sample_new < sample_old) when the
acceleration curve crosses below the dynamic threshold.

Peak Detection: The step counter calculates the steps from the
x-axis, y-axis, or z-axis, depending on which axis’s acceleration
change is the largest one. If the changes in acceleration are too
small, the step counter will discard them.

The step counter can work well by using this algorithm, but
sometimes it seems too sensitive. When the pedometer vibrates very
rapidly or very slowly from a cause other than walking or running,
the step counter will also take it as a step. Such invalid vibrations
must be discarded in order to find the true rhythmic steps. Time
window and count regulation are used to solve this problem.

Time window is used to discard the invalid vibrations. We
assume that people can run as rapidly as five steps per second
and walk as slowly as one step every two seconds. Thus, the
interval between two valid steps is defined as being in the time
window [0.2 s to 2.0 s]; all steps with intervals outside the time
window should be discarded.

The ADXL345’s feature of user-selectable output data rate is
helpful in implementing the time window. Table 1 shows the
configurable data rate (and current consumption) at TA = 25 C,
VS = 2.5 V, and VDD I/O = 1.8 V.

SAMPLE_RESULT SAMPLE_NEW SAMPLE_OLD
ACCELERATION

CHANGES > PRECISION

ACCELERATION
CHANGES < PRECISION

DECISION

DYNAMIC
THRESHOLD

OUTPUT
STEP

Figure 6. Dynamic threshold and dynamic precision.

!ai < ⌧ ^ ai�1 > ⌧

G. Zachmann 42Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Alternative to head tracking: track the user's heels

describe the shape of this distribution. Templeman and Sibert
[14] described their speed curves as looking much like Figure 3(c)
– claiming to achieve the smoothness and continuity that are also
our goals for the LLCM-WIP system.

Of all of these locomotion systems Pointman is the only one
that may be considered continuous, since it directly maps pedal
movement to avatar/viewpoint movement. The other systems
detect a pattern of motion of some part of the body and identify
that pattern as a step. When a step is identified, the amount of
motion corresponding to a step is applied. Thus each step is a
discrete event, and the pattern-detection mechanism must
necessarily wait until enough of a step motion has been performed
by the user to unambiguously identify a step.

The Low-Latency, Continuous-Motion Walking-in-Place (LLCM-
WIP) system – described in the remainder of this paper –
improves on previous work in regard to lower latency and
continuous motion. In LLCM-WIP, we consider user input as a
continuous signal, not a series of discrete step events. In fact,
LLCM-WIP has no concept of a step. It simply maps the speed of
the heels to locomotion speed, employing minimal signal
processing instead of pattern recognition. The result is a
responsive system that produces smooth and realistic locomotion.

3 DESCRIPTION OF THE LOW-LATENCY, CONTINUOUS-
MOTION WALKING-IN-PLACE SYSTEM

The implementation of LLCM-WIP is quite simple: It is a
sequence of simple signal-processing operations on heel-tracking
data. Section 3.1 gives an overview, and the following
subsections describe the operations.

We developed LLCM-WIP to meet four important goals, each
of which is fundamental to the experience of walking:
• Low latency
• Smooth locomotion between steps
• Continuous control of locomotion speed within each step
• Incorporation of real-world turning and short-distance

maneuvering into virtual locomotion

We will point out how the components described in the

following sub-sections, along with careful choice of their “tuning”
parameters, accomplish the above goals.

3.1 The System, in Brief
The LLCM-WIP system consists of the following stages. Note
that stages 1-7 are performed on the two feet separately. Figure 3
shows the signal at several points in the process.

1. Track heel position
2. Isolate vertical component (z)
3. Numeric differentiation
4. Invert negative parts (absolute value)
5. Smoothing (low-pass filter)
6. Subtract a constant speed offset
7. Clamp negative values to zero
8. Combine (sum) signals from Left and Right feet
9. Scale to user-specific walking speed
10. Apply orientation (chest-direction with optional joystick)
11. Integrate locomotion velocity to get avatar-position offset
12. Sum avatar-position offset with real-world head position
13. Render viewpoint from combined virtual/real-world position

Figure 3: System overview. We track the vertical position of
the user’s heels. Through numeric differentiation, we obtain
the heel speed. After some signal processing operations, we
have a virtual locomotion speed.

3.2 Vertical Speed of the Heels
Whereas previous systems focused on knee motion, we start with
the vertical motion of the user’s heel. To obtain an estimate of the
heel’s vertical speed, we track its position and perform numeric
differentiation on the vertical component to yield vertical velocity.
We then invert the negative portions to yield a non-negative
signal: the vertical heel-speed. Figure 3b shows the combined
vertical heel-speed, summed over the left and right feet.

Because we employ a magnetic tracker and our lab floor is
metal, we are unable to place trackers directly on the user’s feet
due to unacceptable distortion in the reading. Instead, we place
trackers on the shins, just below the knees, and perform a simple,
rigid-body transform to estimate the user’s heel location. The
offset from the shin-mounted tracker to the bottom of the heel is
roughly fixed, regardless of the ankle pose. Even an approximate
offset serves quite well: Instead of measuring each individual
user’s shin length, we use the same (typical) value for all users.

The output of this stage is a pair of scalar signals: the vertical
speed (a positive quantity) of the left and right heels. Sections 3.3
and 3.4 will explain how these signals are combined and mapped
to locomotion speed.

A direct benefit of considering only the vertical component of
the heel’s velocity is that real-world turning and short-range
maneuvering can be distinguished from intentional virtual
locomotion. For instance, nearly all natural, in-place turning
involves vertical heel motions on the order of several centimeters
or less, occurring at a speed that is much slower than that of actual
locomotion steps. Users quickly learn to perform in-place turns
and short, real-world steps with little vertical motion of the heels.
To prevent incidental vertical motions from producing unintended
virtual locomotion (i.e. drift), we subtract a constant from heel
speed, which effectively eliminates small or slow vertical motions
of the heel (see section 3.3).

Numeric
Differentiation

Smoothing,
Offsetting, Scaling

99

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2010 at 14:43:40 UTC from IEEE Xplore. Restrictions apply.

describe the shape of this distribution. Templeman and Sibert
[14] described their speed curves as looking much like Figure 3(c)
– claiming to achieve the smoothness and continuity that are also
our goals for the LLCM-WIP system.

Of all of these locomotion systems Pointman is the only one
that may be considered continuous, since it directly maps pedal
movement to avatar/viewpoint movement. The other systems
detect a pattern of motion of some part of the body and identify
that pattern as a step. When a step is identified, the amount of
motion corresponding to a step is applied. Thus each step is a
discrete event, and the pattern-detection mechanism must
necessarily wait until enough of a step motion has been performed
by the user to unambiguously identify a step.

The Low-Latency, Continuous-Motion Walking-in-Place (LLCM-
WIP) system – described in the remainder of this paper –
improves on previous work in regard to lower latency and
continuous motion. In LLCM-WIP, we consider user input as a
continuous signal, not a series of discrete step events. In fact,
LLCM-WIP has no concept of a step. It simply maps the speed of
the heels to locomotion speed, employing minimal signal
processing instead of pattern recognition. The result is a
responsive system that produces smooth and realistic locomotion.

3 DESCRIPTION OF THE LOW-LATENCY, CONTINUOUS-
MOTION WALKING-IN-PLACE SYSTEM

The implementation of LLCM-WIP is quite simple: It is a
sequence of simple signal-processing operations on heel-tracking
data. Section 3.1 gives an overview, and the following
subsections describe the operations.

We developed LLCM-WIP to meet four important goals, each
of which is fundamental to the experience of walking:
• Low latency
• Smooth locomotion between steps
• Continuous control of locomotion speed within each step
• Incorporation of real-world turning and short-distance

maneuvering into virtual locomotion

We will point out how the components described in the

following sub-sections, along with careful choice of their “tuning”
parameters, accomplish the above goals.

3.1 The System, in Brief
The LLCM-WIP system consists of the following stages. Note
that stages 1-7 are performed on the two feet separately. Figure 3
shows the signal at several points in the process.

1. Track heel position
2. Isolate vertical component (z)
3. Numeric differentiation
4. Invert negative parts (absolute value)
5. Smoothing (low-pass filter)
6. Subtract a constant speed offset
7. Clamp negative values to zero
8. Combine (sum) signals from Left and Right feet
9. Scale to user-specific walking speed
10. Apply orientation (chest-direction with optional joystick)
11. Integrate locomotion velocity to get avatar-position offset
12. Sum avatar-position offset with real-world head position
13. Render viewpoint from combined virtual/real-world position

Figure 3: System overview. We track the vertical position of
the user’s heels. Through numeric differentiation, we obtain
the heel speed. After some signal processing operations, we
have a virtual locomotion speed.

3.2 Vertical Speed of the Heels
Whereas previous systems focused on knee motion, we start with
the vertical motion of the user’s heel. To obtain an estimate of the
heel’s vertical speed, we track its position and perform numeric
differentiation on the vertical component to yield vertical velocity.
We then invert the negative portions to yield a non-negative
signal: the vertical heel-speed. Figure 3b shows the combined
vertical heel-speed, summed over the left and right feet.

Because we employ a magnetic tracker and our lab floor is
metal, we are unable to place trackers directly on the user’s feet
due to unacceptable distortion in the reading. Instead, we place
trackers on the shins, just below the knees, and perform a simple,
rigid-body transform to estimate the user’s heel location. The
offset from the shin-mounted tracker to the bottom of the heel is
roughly fixed, regardless of the ankle pose. Even an approximate
offset serves quite well: Instead of measuring each individual
user’s shin length, we use the same (typical) value for all users.

The output of this stage is a pair of scalar signals: the vertical
speed (a positive quantity) of the left and right heels. Sections 3.3
and 3.4 will explain how these signals are combined and mapped
to locomotion speed.

A direct benefit of considering only the vertical component of
the heel’s velocity is that real-world turning and short-range
maneuvering can be distinguished from intentional virtual
locomotion. For instance, nearly all natural, in-place turning
involves vertical heel motions on the order of several centimeters
or less, occurring at a speed that is much slower than that of actual
locomotion steps. Users quickly learn to perform in-place turns
and short, real-world steps with little vertical motion of the heels.
To prevent incidental vertical motions from producing unintended
virtual locomotion (i.e. drift), we subtract a constant from heel
speed, which effectively eliminates small or slow vertical motions
of the heel (see section 3.3).

Numeric
Differentiation

Smoothing,
Offsetting, Scaling

99

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2010 at 14:43:40 UTC from IEEE Xplore. Restrictions apply.

describe the shape of this distribution. Templeman and Sibert
[14] described their speed curves as looking much like Figure 3(c)
– claiming to achieve the smoothness and continuity that are also
our goals for the LLCM-WIP system.

Of all of these locomotion systems Pointman is the only one
that may be considered continuous, since it directly maps pedal
movement to avatar/viewpoint movement. The other systems
detect a pattern of motion of some part of the body and identify
that pattern as a step. When a step is identified, the amount of
motion corresponding to a step is applied. Thus each step is a
discrete event, and the pattern-detection mechanism must
necessarily wait until enough of a step motion has been performed
by the user to unambiguously identify a step.

The Low-Latency, Continuous-Motion Walking-in-Place (LLCM-
WIP) system – described in the remainder of this paper –
improves on previous work in regard to lower latency and
continuous motion. In LLCM-WIP, we consider user input as a
continuous signal, not a series of discrete step events. In fact,
LLCM-WIP has no concept of a step. It simply maps the speed of
the heels to locomotion speed, employing minimal signal
processing instead of pattern recognition. The result is a
responsive system that produces smooth and realistic locomotion.

3 DESCRIPTION OF THE LOW-LATENCY, CONTINUOUS-
MOTION WALKING-IN-PLACE SYSTEM

The implementation of LLCM-WIP is quite simple: It is a
sequence of simple signal-processing operations on heel-tracking
data. Section 3.1 gives an overview, and the following
subsections describe the operations.

We developed LLCM-WIP to meet four important goals, each
of which is fundamental to the experience of walking:

• Low latency
• Smooth locomotion between steps
• Continuous control of locomotion speed within each step
• Incorporation of real-world turning and short-distance

maneuvering into virtual locomotion

We will point out how the components described in the

following sub-sections, along with careful choice of their “tuning”
parameters, accomplish the above goals.

3.1 The System, in Brief
The LLCM-WIP system consists of the following stages. Note
that stages 1-7 are performed on the two feet separately. Figure 3
shows the signal at several points in the process.

1. Track heel position
2. Isolate vertical component (z)
3. Numeric differentiation
4. Invert negative parts (absolute value)
5. Smoothing (low-pass filter)
6. Subtract a constant speed offset
7. Clamp negative values to zero
8. Combine (sum) signals from Left and Right feet
9. Scale to user-specific walking speed
10. Apply orientation (chest-direction with optional joystick)
11. Integrate locomotion velocity to get avatar-position offset
12. Sum avatar-position offset with real-world head position
13. Render viewpoint from combined virtual/real-world position

Figure 3: System overview. We track the vertical position of
the user’s heels. Through numeric differentiation, we obtain
the heel speed. After some signal processing operations, we
have a virtual locomotion speed.

3.2 Vertical Speed of the Heels
Whereas previous systems focused on knee motion, we start with
the vertical motion of the user’s heel. To obtain an estimate of the
heel’s vertical speed, we track its position and perform numeric
differentiation on the vertical component to yield vertical velocity.
We then invert the negative portions to yield a non-negative
signal: the vertical heel-speed. Figure 3b shows the combined
vertical heel-speed, summed over the left and right feet.

Because we employ a magnetic tracker and our lab floor is
metal, we are unable to place trackers directly on the user’s feet
due to unacceptable distortion in the reading. Instead, we place
trackers on the shins, just below the knees, and perform a simple,
rigid-body transform to estimate the user’s heel location. The
offset from the shin-mounted tracker to the bottom of the heel is
roughly fixed, regardless of the ankle pose. Even an approximate
offset serves quite well: Instead of measuring each individual
user’s shin length, we use the same (typical) value for all users.

The output of this stage is a pair of scalar signals: the vertical
speed (a positive quantity) of the left and right heels. Sections 3.3
and 3.4 will explain how these signals are combined and mapped
to locomotion speed.

A direct benefit of considering only the vertical component of
the heel’s velocity is that real-world turning and short-range
maneuvering can be distinguished from intentional virtual
locomotion. For instance, nearly all natural, in-place turning
involves vertical heel motions on the order of several centimeters
or less, occurring at a speed that is much slower than that of actual
locomotion steps. Users quickly learn to perform in-place turns
and short, real-world steps with little vertical motion of the heels.
To prevent incidental vertical motions from producing unintended
virtual locomotion (i.e. drift), we subtract a constant from heel
speed, which effectively eliminates small or slow vertical motions
of the heel (see section 3.3).

Numeric
Differentiation

Smoothing,
Offsetting, Scaling

99

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2010 at 14:43:40 UTC from IEEE Xplore. Restrictions apply.

Differentiate Smooth

G. Zachmann 43Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Example in Mobile VR

Eelke Folmer: VR-STEP

G. Zachmann 44Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Head Tilt Based Navigation

§ Idea: angle between head's vertical axis and gravitational "up"
vector determines navigation speed (if bigger than threshold)

§ Project vector o onto XZ plane ⟶ navigation direction

§ Disadvantage: navigation cannot be uncoupled
from gaze direction

§ Could be combined with walking-in-place

§ Walking = trigger ,
head tilt = direction

§ Allows for
omnidirectional
navigation
(sideways, etc.)

BACKGROUND
Currently, controllers are most commonly used for VR naviga-
tion, but because they don’t offer proprioceptive and vestibular
feedback they provide low immersion [7] and carry a higher
risk of inducing cybersickness [17]. Various virtual locomo-
tion techniques exist, but because we focus on mobile VR
contexts, we only survey methods that offer handsfree input.

WIP [25] is handsfree and as efficient as controller input [14];
but it is more immersive [26]; allows for better control over
velocity [29]; and better spatial orientation [19]. Various
WIP implementations are available but these rely on external
cameras [25, 40, 28] or bulky hardware [39, 12, 6] which
aren’t feasible to use in mobile VR contexts. VR-step [30] is a
WIP implementation using inertial sensing that is available on
mobile VR platforms, without any extra sensors. A user study
with 18 subjects compared VR-step to an auto-walk technique
and found no differences in performance or reliability, though
VR-step was found to be more immersive and intuitive. A
limitation of current WIP implementations is that they don’t
support omnidirectional navigation.

Leaning interfaces offer handsfree omnidirectional VR naviga-
tion and though they don’t stimulate proprioception like WIP,
they maintain equilibrioception, which has found to be benefi-
cial to immersion [37]. Laviola [20] explores leaning input to
enable handsfree navigation in a 3D cave, but no comparative
user studies were performed. ChairIO [4] embeds sensors in a
single legged stool with a tilting spring mechanism to allow
for 3 degrees of freedom (DOF) leaning input. Some results
from user studies are reported, but it has been argued that
seated leaning interfaces have limited immersion [22]. Both
De Haan [13] and Valkov [32] explore the use of a low cost
Wii balance board to enable 2 DOF leaning input for VR navi-
gation. Though these approaches use low-cost commercially
available hardware, no comparisons to other techniques are
made.

Joyman [22] is a 2 DOF leaning interface inspired by a joystick.
It embeds an inertial sensor in a wooden board with metal
handrails that is placed inside of a mini trampoline. When a
user leans in a direction the board elastically tilts in the same
direction. A user study with 16 participants compares Joyman
to joystick input and found joysticks to be more efficient with
no difference in error. Joyman was found to be more fun, more
immersive and offer better rotation realism than joystick input.
Wang et al. [37] explores the use of a leaning based surfboard
interface that offers 3 DOF leaning input. A user study with
24 subjects compares two different modes (isometric/elastic)
and found the elastic mode to offer higher intuition, realism,
presence and fun but was subject to greater fatigue and loss
of balance. A follow up study evaluated frontal and sideways
stance [36] and found a frontal stance is best.

Closely related are also the following approaches. Handsfree
input is often required to make computers more accessible
to users with severe motor impairments but who still retain
dexterity of the head. Head tracking has been explored to
let quadriplegics control a mouse pointer on the screen [5].
For real world 2D navigation, head tilt has been explored for
steering a wheelchair [10].

IMPLEMENTATION OF HEAD-TILT NAVIGATION
The implementation of head-tilt was largely inspired by the
Joyman leaning interface [22], which imagines the user’s body
to be a joystick. Our approach differs as we appropriate the
head into a joystick. An upward vector~o is defined as pointing
straight upwards (aligning with the negative gravity vector~g)
when the user looks straight ahead. The angle a between ~o
and ~g is defined as: a =~o •~g and is 0� when there is no tilt
(see figure2). Because the user wears a smartphone on their
head, both~o and~g can be measured using its gyroscope.

Figure 2. defining head tilt us-
ing vectors

Several tradeoffs should be
considered when mapping
head-tilt to virtual motion.
When using only head-tilt as
input for navigation (TILT),
we sacrifice some freedom
of being able to look around.
When a exceeds a predefined
threshold p the user’s avatar
will move in the direction of
vector ~m, which is the projec-
tion of~o onto the XZ plane.

Once a exceeds threshold p,
immediate acceleration to a
predefined velocity V might
cause cybersickness, certainly for lateral movements [35]. It
might be better to gradually accelerate to V or interpolate the
velocity between 0 and a value q that is reached for some max-
imum value of a to allow for more precise navigation as users
can control their velocity. The value chosen for p determines
how much freedom a user still has to look around versus the
amount of head tilt that needs to be provided for navigating.
This requires a careful tradeoff; requiring too much tilt is in-
efficient and limits users’ ability to see where they are going
where a low value of p doesn’t allow users to look up or down.
A previous study that analyzed free form navigation in VR
[16] found that forward motion (47%) or forward+steering
(37%) are the most frequently used inputs. Given these results,
one could implement different values of p depending on what
quadrant ~m, lies, e.g., implement a small value for p for for-
ward tilt and larger values for the other directions as these are
less likely to be used and users cannot see in those directions
anyway.

To avoid this tradeoff altogether, looking around and triggering
motion should be decoupled using a state transition. Given the
limited input options of mobile VR we developed a solution
that can enable this handsfree. When augmenting WIP with
head-tilt (WIP-TILT), detected step input can act as a trigger for
navigation, while still allowing users to look around when they
do not walk. WIP-TILT is unique in that it combines the best of
WIP and leaning interfaces, as it generates both proprioceptive
and equilibratory feedback; which could potentially be most
immersive.

EVALUATION
Previous work [22, 37] has only evaluated full body leaning
interfaces. In this note we evaluate head-tilt for navigation

2

G. Zachmann 45Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Exploration of VEs using a Magic Mirror

§ Task/goal: present a second viewpoint (like inset in an image)
intuitively in a VE, and allow for its manipulation

§ Idea: use the mirror as a metaphor → "magic mirror"

§ One object serves as hand mirror (could even look like it)

§ Keeps a fixed position relative to camera (follows head motions)

§ Can be manipulated like any other object in the VE

§ Additional features (not possible with real mirrors):

§ Zooming

§ Magnification / scaling down of image in mirror

§ Clipping of objects in front of mirror (which occlude mirror)

§ "Un-mirror" scene visible in mirror ("Richtig-herum-Drehen")

§ Switch between main viewpoint and mirror viewpoint

Optional

G. Zachmann 46Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Examples:

§ Implementation:

§ Render scene 2x

§ First, render only into a small viewport
(in the shape of the mirror) with
mirrored viewpoint

§ Save as texture

§ Second, render into complete viewport
from main viewpoint

§ Third, render texture on top of mirror
object (no z test)

§ Or, use method presented in
Computer Graphics class

Optional

G. Zachmann 47Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Immersive Navidget – Example for Task Decomposition

§ Metaphor for defining the viewpoint directly

§ Input device: wand with wheels and buttons

§ Decomposition of the task:

1. Define the center of interest (COI)

- E.g. by ray casting: shoot ray into scene,
intersection point = new COI

- Will be the center of a sphere

2. Define radius of sphere = distance of new
viewpoint from COI

- Here: specified using wheel on wand

3. Define viewpoint on sphere (using ray)

4. Animate viewpoint on path towards new
viewpoint (= smooth teleportation)

§ Switch phases using a button on wand

G. Zachmann 48Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

G. Zachmann 50Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Interlude: User Models

§ Idea: if we had a model of how users "work", then we could

predict how they will interact with a specific UI and what their

user performance will be

§ Advantage (theoretically): no user studies and no UI mock-ups

necesary any more

§ Related fields: psychophysics, user interface design, usability

G. Zachmann 51Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Power Law of Practice

§ Describes, what time is needed to perform an activity after the
n-th repetition:

T1 = time needed for first performance of the activity,
Tn = time for n-th repetition,
a ≈ 0.2 ... 0.6

§ Warning:

§ Applies only to mechanical activities, e.g. :

- Using the mouse, typing on the keyboard

§ Does not apply to cognitive activities, e.g., learning for exams! ;-)

§ This effect, called learning effect, must be kept in mind when
designing experiments!

Tn =
T1

na

G. Zachmann 52Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Hick's Law

§ Describes the time needed to make a 1-out-of-n selection, but
there cannot be any cognitive workload involved:

, Ic ≈ 150 msec

where n = number of choices

§ Example: n buttons + n lights, one is lighted up randomly, user has to
press corresponding button

§ Assumption: the distribution of the choices is uniform!

§ Warning: don't apply this law too blindly!
§ E.g., practice has a big influence on reaction time

§ Sometimes, Hick's law is taken as proof that one large menu is more
time-efficient than several small submenus ("rule of large menus") …
I argue this is — mathematically — correct only because of the "+1",
for which there is no clear experimental evidence! Besides, there are
many other factors involved in large menus (clarity, Fitts' law, …)

T = Ic log2(n + 1)

Practice

Number of choices

Re
ac

tio
n

tim
e

/ s
ec

G. Zachmann 53Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Fitts's Law

§ Describes the time needed to reach a target

§ Task: reach and hit a specific target as quickly
and as precisely as possible with your hand/
pencil/ mouse/ etc., from a resting position
⟶ "target acquisition"

§ The law:

where D = distance between resting position
and target, W = diameter of the target

§ The "index of difficulty" (ID) =

T = b log2(
D

W
+ 1) + a

log2(
D

W
+ 1)

Target

Pointer

W

D

G. Zachmann 54Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Derivation of Fitts' Law

§ Assume a control loop muscle-eye-brain with

1. Constant processing power of brain

2. Inaccuracies of movement are proportional to target distance

§ Simplification: discretize control loop over time

§ Distance of pointer from target

§ ,

§ After n steps, the pointer is inside the target:

§ Solving for n yields

§ Each steps takes time !,
brain's "setup" time = a, overall:

D0 = D Di = �Di�1 = �iD

Dn = �nD < W

n = log�(
W
D)

Circle of error after first iteration

Circle of error
after second iteration

TargetStart
position

T = a + n⌧ = a + ⌧ log�(
W
D) = a + b log(D

W)

G. Zachmann 55Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Demo / Experiment

§ Fitt's Law does apply directly to mouse movements required to
hit icons and buttons

Marcin Wichary , Vrije Universiteit: http://fww.few.vu.nl/hci/interactive/fitts/

G. Zachmann 56Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Applications of Fitts' Law

§ "Rule of Target Size": The size of a button should be proportional
to its expected frequency of use

§ Other consequences:
"Macintosh fans like to point out that Fitts's Law implies a very
large advantage for Mac-style edge-of-screen menus with no
borders, because they effectively extend the depth of the target area
off-screen. This prediction is verified by experiment."
[Raymond & Landley: "The Art of Unix Usability", 2004]

G. Zachmann 57Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Tear-off menus and context menus: they decrease the average travel
distance D

§ Apple's "Dock": the size of the icons gets adjusted dynamically

1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

G. Zachmann 58Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Obvious limitations of Fitts's Law:

§ Fitts's Law cannot capture all aspects/widgets of a GUI

- E.g. moving target (like scrollable lists)

§ There are many other decisions with regards to the design of a UI that
are contrary to an application of Fitts's law

Fun and instructive quiz on the homepage of this VR course: "A Quiz Designed to Give You Fitts"

G. Zachmann 59Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Fitts' law also holds for hand-off tasks:

§ One user grabs a virtual cube using a point probe, moves it towards the
other user's point probe, then the other user tries to grab it

§ Result:

1 2 3 4

4.1 Completion Time
The result showed no significant differences (F1,10 =
0.42, p = 0.53) between the haptic and the nonhaptic
conditions regarding the average time it took to
perform a successful hand off. The interaction
between session and condition was not significant
(F1,10 = 0.07, p = 0.93), neither was the interaction
between condition and size (F5,50 = 0.99, p = 0.43).
The mean time it took subjects to hand off a cube
was 2.8 for the haptic condition and 2.9 seconds for
the nonhaptic condition (Figure 3.).

0

.5

1

1.5

2

2.5

3

3.5

Haptic Non-haptic

Interaction Bar Plot for Mean Time (sec)
Effect: Haptic Condtion
Error Bars: 95% Confidence Interval

Figure 3: Mean times regarding error free hand offs in the

haptic and the nonhaptic conditions.

The results showed that there was a significant
effect of cube size (F5,50 = 30.2, p < 0.0001) in this
experiment. This clearly demonstrated a Fitts’ law
effect:

T = a + b ID (1)

where the index is defined as

ID = log2(D/W + 1) (2)

In this experiment, the total distance (D) was
fixed at 15.9 cm. The object sizes (W) were 1.2 cm,
1.6 cm, 2.0 cm, 2.4 cm, 2.8 cm and 3.2 cm. Applying
equation (2), the index of task difficulty (ID) in this
experiment was: 3.8, 3.45, 3.16, 2.93, 2.74, and 2.58
bits. The fit between Fitts’ law prediction and data
collected in the haptic condition was remarkable (r2
= 0.992), given that the hand off task is very
different from and more complex than Fitts’
traditional tapping task. Scatter-plots show linear
regression between time to perform the task and
Fitts’ index of difficulty (Figure 4a.).

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
H

ap
tic

 C
om

pl
et

io
n

Ti
m

e
(s

ec
)

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
ID

Y = 1.007 + .579 * X; R^2 = .992

(a) Haptic condition

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

N
on

-H
ap

tic
 C

om
pl

et
io

n
Ti

m
e

(s
ec

)

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
ID

Y = .778 + .669 * X; R^2 = .93

(b) Nonhaptic condition

Figure 4: Average time for collaboratively performed Fitts’

task as a function of difficulty in both the haptic and
nonhaptic condition.

Applying equation (1) and (2) for the haptic

condition we have:

T = 1.01 + 0.579 log2(D/W + 1) (3)

Furthermore, the fit between the Fitts’ law

prediction and data collected in the nonhaptic
condition is also good (r2 = 0.93) (Figure 4b.).
Applying equation (1) and (2) for the nonhaptic
condition we have:

T = 0.778+ 0.669 log2(D/W + 1) (4)

4.1.1 Time to Perform Hand offs Including Errors
The result showed no significant difference (F1,10 =
3.2, p = 0.1) between the haptic and the nonhaptic
conditions regarding the average time it took to
perform hand offs including errors. The haptic
condition had no significant interaction with session

Index of Difficulty

Ta
sk

 c
om

pl
et

io
n

tim
e

G. Zachmann 60Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Bad Examples

§ Screenshots of Studip:

This small
symbol is a button!

This little word is a button!
(and hard to distinguish from the rest
of the text/background!)

G. Zachmann 61Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Fitts' Law with Lag

§ In many interactive systems (VR, telepresence, etc.), more or less lag
is present

§ Fitts' law with lag:

where ls = system lag ("from motion to photon"),
lh = "human lag" ("from photon to motion"),
a = time to initialize and terminate task (task dependent),
b = "number of sensory-motor control loop cycles in brain".

Starting values by rule of thumb:
b ≈ 1.6
lh ≈ 0.1,…, 0.3

T = a + b(lh + ls)·ID

G. Zachmann 63Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Isomorphic vs Non-Isomorphic Techniques

§ Display space = virtual space containing the virtual "pointer"

§ Control space = physical space containing the tracker/controller/user

§ Control-Display ratio (C-D ratio) = the ratio of the movement in
physical space over the resulting movement in display space

§ Isomorphic mapping:

§ 1:1 correspondence between physical space and virtual space

§ Better suited for direct interaction techniques

§ Non-isomorphic mapping:

§ "Magic" tools (interaction metaphors) expands working volume or precision

§ Better suited for remote interaction techniques

§ Most interaction techniques are non-isomorph

G. Zachmann 64Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Direct Selection/Manipulation with Non-Linear Mapping
(the "Go-Go Technique")

§ Direct selection/manipulation requires direct touching & grasping
objects with virtual hand

§ Goal: increase working volume

§ Idea:

§ Scale tracking values non-linearly
outside the "near field"

§ Keep linear scaling in near-field for
better precision

§ Suitable for head and hand tracking

§ Works only with absolute input devices

§ Disadvantages:

§ Proprioception gets lost

§ No remote precision handling

G. Zachmann 65Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Selection

§ Task decomposition:
1. Switch selection mode on

2. Identify object(s) to be included in selection
- Often, this is some form of target acquisition (but not necessarily!)

- Give some kind of feedback during this step

3. Confirm/cancel

4. Feedback: which objects are actually selected

G. Zachmann 66Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Some Possibilities for Step 2 (Identifying Objects)

§ Direct = touch with hand
§ Ray-based (ray casting)

§ E.g., shoot "laser pointer" from virtual hand
into scene

§ Or: extend conceptual ray from current
viewpoint through finger tip (a.k.a.
occlusion technique)

§ Volume-based, e.g. using a cone around
the ray

§ Speech (name objects)
§ Menues (how to select items in menu?)
§ Mixed techniques:

§ Image plane interaction (later)

§ World-in-Miniature (dito)
§ Etc.

Laser pointer

Menu with ray technique

G. Zachmann 67Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Overview of Some Ray-Based Techniques

§ Variables used in the following:
H = hand position
E = viewpoint
h = "pointing direction" of the hand
H2 = position of the left hand

Technique Volume Origin Direction

Raycasting ray H h

Flashlight cone H h

Two-handed pointing ray H2 H – H2

Occlusion selection ray E H - E

Aperture cone E H - E

G. Zachmann 68Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Flexible Pointer

§ Observation: people try to describe a "curve" with their pointing
gestures, when object pointed at is not in line of sight

§ Metaphor in VR: bent selection ray

§ Problem: intuitiv and easy specification of a curvature using the
available input devices (dataglove, trackers, ...)

G. Zachmann 69Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Friction Surfaces

§ Task here: control so-called hybrid interfaces

§ Goal: control 2D GUIs of desktop apps directly in VR

§ Implementation: a modified VNC client

§ Problem: the target width (here: solid angle!) is extremely small

G. Zachmann 70Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Idea:

§ Scale the C-D ratio down, as soon

as user interacts with a 2D window

(in VE)

§ Problem: how to make the non-

isomorphism intuitive, how to

bridge the noticeable difference

between motor & display space?

§ Two rays were irritating to users

§ Solution: show just one ray, but

make it bend

device ray selection rayfeedback ray

G. Zachmann 71Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Result: much increased user efficiency:

C-D ratio = 1

C-D ratio < 1

G. Zachmann 72Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Video

[G. de Haan, M. Koutek, and F. Post]

G. Zachmann 73Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

G. Zachmann 74Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

"Semantic" Pointing (Non-Constant C-D Ratio)

§ Idea:

§ Modify C-D ratio depending on distance between pointer and closest
target

§ Large distance d → scale motions from motor space up

§ Small distance d → scale motion downs = high precision in display space

§ E.g. with a function like this one:

§ Visual feedback:

§ Cursor size � C-D ratio

§ Color of pointer visualizes distance of target (e.g. "red" = "very close")

s(d) = M +
m �M

(1 + d)�

m

M

 0 2 4 6 8 10

s
c
a

lin
g

distance

Optional

G. Zachmann 75Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Eye-Hand Visibility Mismatch

§ Two obvious problems of all techniques where ray emanates
from the user's (virtual) hand :

1. The set of objects visible from viewpoint E is different from
set of objects "visible" from hand position H

Object B is selectable,
but not visible

Object C is visisble,
but not selectable

G. Zachmann 76Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

2. The surface of an object "visible" from H is different than surface
visible from E; consequences:

- Real target width is different
than visible target width

- Perhaps no/insufficient
feedback during selection
process

G. Zachmann 77Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Idea:

§ Shoot selection ray emanating from viewpoint E into hand direction h

§ Visual feedback: ray emanating from H to first intersection of selection ray

§ Experiment shows: users are ca. 15-20% faster than with normal ray

Argelaguet, Andujar, Trueba

G. Zachmann 78Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

IntenSelect: Ranking + Filtering

§ Assumptions:

§ Cone is better than ray

§ In general, a lot of objects are in the cone (i.e., dense environment)

§ Idea for disambiguation:

§ Define scalar field inside cone

§ Compute a "score" for each object

§ Create ranking of objects

§ Simple scoring function:

§ A scoring function that prefers near objects:

s = 1� �

⇥

d1

d2

α

β

Center of obj

s = 1� 1

�
tan�1

� d1

(d2)k

⇥
, k ⇥ [1

2 , 1]

G. Zachmann 79Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Even more preference of near objects:

r xCone's axis

y

s =

⇤
1� 1

�
tan�1

� d1

(d2)k

⇥⌅
+

0.1

⇤
1� (x � r)2 + y 2

r 2

⌅

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

G. Zachmann 80Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Problem: jitter in user's hand leads to frequent changes in ranking

§ Solution: filtering

s(t) = score over time, σ = "stickiness", τ = "snappiness"

§ Generalization: FIR filter (see Chapter 7)

§ Feedback to user:

§ Bend ray towards object with highest ranking

§ Show straight ray for cone's axis

ŝ(t) = �ŝ(t � 1) + ⇥s(t)

s = s(t)

G. Zachmann 81Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Other Ranking Functions

§ Other distance functions, e.g., prefer far-away objects

§ Better computation of "distance" from cone's axis:

§ Render object with low resolution into off-screen frame buffer with
"viewpoint" = apex of cone, viewing direction = cone's axis

§ Compute average distance of all pixels of object from center (= cone's
axis) :

s � = 1�
1
n

�
pixel p d(p)

radius

Optional

G. Zachmann 82Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Application in a Multi-Modal AR Interface

Here, disambiguation is done via voice commands

G. Zachmann 83Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

iSith: Two-Handed Selection

§ Idea: intersection of two rays defines "selection center"

§ Practical implementation:

§ One ray per hand

§ Trigger selection mode as soon as distance between rays < threshold

§ Midpoint of the shortest line between the rays = "selection center"

§ Select all objects "close enough" to this selection center

Optional

G. Zachmann 84Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Optional

G. Zachmann 85Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Bubble Cursor and the Depth Ray

§ Another method to increase the effective target size

§ Bubble Cursor:

§ 3D cross hairs

§ Select always the closest object

§ Make radius of transparent
sphere around 3D crosshairs =
distance to closest object (feedback for "density")

§ Feedback to indicate active object: transparent sphere around it

§ Effective target size =
Voronoi region of object →

§ (For Voronoi regions, see
course "Geometric
Data Structures for CG")

Optional

G. Zachmann 86Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Depth Ray:

§ Only consider objects being "stabbed"
by the ray

§ User moves a "depth marker" along
the ray

§ Of all "stabbed" objects, take the one
closest to the depth marker

§ Effective target size = segment on the
ray

Optional

G. Zachmann 87Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Handling occlusion: make occluders in front
of the depth marker transparent (possibly
depending on the distance from the depth
marker)

Bubble cursor [Lode van Acken]
Depth Ray

Optional

G. Zachmann 88Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Balloon Selection

§ Idea: control a helium balloon

§ Dominant hand
controls 2D position

§ Non-dominant hand
controls 1D height

§ Meant for usage on work bench

§ Implementation:

§ Right/left index finger defines position / height, resp.

§ Both index fingers remain on the table

§ System control (e.g., triggers) by contacts in data glove

§ Advantage:

§ Decomposition of a 3D tasks in two separate low-dimensional tasks

§ Natural constraint (table, a.k.a. passive haptics)

G. Zachmann 89Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

G. Zachmann 91Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Object Manipulation (Grasping & Moving)

§ Another pretty frequent interaction task

§ Simple, direct grasping using "sticky metaphor" (not realistic):

1. Select object

2. Trigger grasping (via gesture, speech command, ...)

3. Wait for collision between hand and object

4. Make object "stick" to hand

5. Trigger release

§ How to implement the "sticking"?

§ Either, re-link object to hand node,

§ Or, maintain transformation invariant
between hand and object

§ My experience: with non-trivial applications,
re-linking causes trouble!

G. Zachmann 92Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Example Video for "Stick-to-Hand" Grasping

World of Comenius

G. Zachmann 93Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

A Vision: Natural User Interaction (NUI)

§ One of the goals: interact with virtual objects using our real
hands as if they were real objects, i.e., no interaction metaphor

Courtesy of Volkswagen AG

G. Zachmann 94Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Side Note: Historic Context of NUIs

§ Originally proposed by Ben Shneiderman in 1980 as
Direct Manipulation

§ For GUIs, but the same principles and benefits apply to today's NUIs

§ Direct manipulation benefits:

§ Novices can learn basic functionality quickly, usually through a
demonstration by a more experienced user

§ Experts can work extremely rapidly to carry out a wide range of tasks, even
defining new functions and features

§ Error messages are rarely needed

§ Feedback: users can see immediately, if their actions are furthering their
goals, and if not, they can simply change the direction of their activity

Optional

G. Zachmann 95Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Taxonomy of Natural Grasping Poses

Cutkosky & Howe, 1990; and Zheng et al, 2011

Optional

G. Zachmann 96Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Optional

G. Zachmann 99Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Postural Hand Synergies [Santello et al., 1998]

Human grasping postures
are a low-dimensional manifold

in posture space

Optional

G. Zachmann 100Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Specimen Box [2017]

§ The technique:

§ Uses a tracked, translucent box as a prop with a world-fixed display

§ The manipulated object is rendered on the wall behind the box, such
that it looks like it is inside the box

G. Zachmann 101Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Advantages:

§ Direct, intuitive object manipulation

§ Passive haptic feedback

§ Disadvantages:

§ Tethering of the box

§ Reflections on the box

§ Users felt the object to be less present

§ Unclear which technique is faster (object manipulation using
specimen box or one-handed "sticky" object grabbing)

G. Zachmann 102Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

DOF Separation/Reduction by the PRISM Metaphor

§ Rubberband metaphor with automatic adjustment of precision

§ Idea:

§ Detect when the user is trying to be precise and when not

§ Adjust C-D ratio (k) accordingly

§ More concretely:

§ Let = translation distance of manipulated object,
= translation distance of user's hand,

§ Set distance

with = average speed of hand during past ½ second,
S = some threshold;

DO

DH

VH

DO = k ·DH k =

�
⌅⇤

⌅⇥

1 , VH > S

VH/S , min < VH < S

0 , VH � min

Optional

G. Zachmann 103Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Additional idea:

§ Do the scaling independently for each coordinate axis

§ Advantage: helps to move objects exactly along an axis of the coord system

§ Recovery from offsets/drifts:

§ Problem: the positions of hand and object drift apart over time

§ Solution: reduce the offset while the user moves the hand very fast

- Make the object move even faster

- During fast movement, the user doesn't notice

§ Remark: this technique works almost exactly analogously for rotations

§ Just convert the orientation of the user's hand to axis + angle (see CG1
course), scale the angle, then convert back to rotation matrix

§ In the original PRISM paper, it was implemented differently

Optional

G. Zachmann 104Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Examples

Frees, Kessler, Kay (http://give.ramapo.edu/prism/prism.html)

Optional

G. Zachmann 105Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

DOF Separation/Reduction by Widgets

§ Idea: provide 3D widgets (with handles) so users know which
DOF they are manipulating

§ Example:

§ Results:
§ Comparison for time-to-completion (TTC) between widgets technique

(1 DOF) and 6 DOF manipulation (unconstrained, unseparated)

§ For translational tasks: TTC(widget) < TTC(6 DOFs)

§ For rotational tasks: TTC(widget) > TTC(6 DOFs)

§ For both task kinds: error(widget) << error(6 DOFs)

(a) Initial State.
(b) Simultaneous translation and 90 de-
grees rotation.

Figure 2: 6DOF Technique.

3.1.1 6DOF or Direct Manipulation

To mimic interactions with physical objects as closely as possi-
ble, direct manipulation uses all 6 DOF information from users’
hands [Wang et al. 2011]. It is often used as a baseline for evalu-
ations of other techniques [Frees et al. 2007; Mendes et al. 2014;
Nguyen et al. 2014]. This technique consists of grabbing an object
directly, moving it to a new location and/or rotating it, and then re-
leasing. After being grabbed, the object directly follows the move-
ment of the hand: dragging changes object’s position and wrist’s
rotation controls object’s rotation. All transformations are simulta-
neously applied to the object, as pictured in Figure 2. The grabbed
point in the object will remain the center of all transformations dur-
ing the entire manipulation, until the object is released.

3.1.2 PRISM

We implemented the PRISM technique as presented by Frees et
al. [Frees and Kessler 2005]. This technique aims in improving ac-
curacy of direct manipulation, switching between a precise and a di-
rect mode according to the current velocity of users’ hands. Hand’s
movement in each coordinate axis is scaled down when users move
their hands slower than a pre-defined threshold in that axis. We
used the threshold value proposed by the original authors. This
scaling results in an offset between the hand and the object being
manipulated, that can be canceled by moving hands faster than the
same threshold. We also included rotations later proposed by same
authors [Frees et al. 2007], which follows the same premise from
translations, scaling down slow wrist rotations. As suggested by the
authors, resulting offsets are represented by a white line for trans-
lations, and two sets of axis for rotations, as shown in Figure 5.
Similarly to 6DOF technique, both translations and rotations can
be performed simultaneously, as exemplified in Figure 3.

(a) Initial State. (b) Simultaneous scaled translation and
rotation, with accumulated offset.

Figure 3: PRISM Technique.

(a) Initial State. (b) Translation.

(c) Rotation.

Figure 4: Widgets Technique.

3.1.3 Widgets for DOF Separation

Widget based manipulations are widely used in mouse and key-
board 3D user interfaces. Our implementation, as opposed to those
described in sections 3.1.1 and 3.1.2, strictly follows DOF separa-
tion. Not only translation and rotation operations are treated inde-
pendently, users can only manipulate 1 DOF at a time. We used
a representation similar to that introduced by Conner et al. [Con-
ner et al. 1992], illustrated in Figure 4. Users can grab the sphere
connected to the desired axis and move the hand along the axis to
trigger object translation. For rotations, the approach is similar, but
the hand movement is performed around the target axis. The deci-
sion to either perform a translation or rotation, is made based on the
hand’s path after 10 cm. Selected transformation and axis remain
locked until a release gesture.

3.2 Methodology

All user sessions followed the same structure, each lasting approx-
imately 45 minutes. We started by introducing the experiment the
participant was about to perform, followed by a brief description of
the techniques being evaluated. The techniques were performed in
alternated order, assuring that each one was experienced in every
possible permutation, in order to avoid biased results.

For each technique we played a video showing how to apply trans-
formations to the object with it. After the video, participants had
a training period of three minutes, or less if they considered them-
selves to be already acquainted, to explore the approach in a ded-
icated environment, showed in Figure 5. Following the practice
period, we asked participants to perform six tasks, described in the
next section. After completing each technique’s tasks, participants
fulfilled a questionnaire regarding distinct aspects of the interaction.
The experiment concluded with a profiling questionnaire.

(a) Initial State.
(b) Simultaneous translation and 90 de-
grees rotation.

Figure 2: 6DOF Technique.

3.1.1 6DOF or Direct Manipulation

To mimic interactions with physical objects as closely as possi-
ble, direct manipulation uses all 6 DOF information from users’
hands [Wang et al. 2011]. It is often used as a baseline for evalu-
ations of other techniques [Frees et al. 2007; Mendes et al. 2014;
Nguyen et al. 2014]. This technique consists of grabbing an object
directly, moving it to a new location and/or rotating it, and then re-
leasing. After being grabbed, the object directly follows the move-
ment of the hand: dragging changes object’s position and wrist’s
rotation controls object’s rotation. All transformations are simulta-
neously applied to the object, as pictured in Figure 2. The grabbed
point in the object will remain the center of all transformations dur-
ing the entire manipulation, until the object is released.

3.1.2 PRISM

We implemented the PRISM technique as presented by Frees et
al. [Frees and Kessler 2005]. This technique aims in improving ac-
curacy of direct manipulation, switching between a precise and a di-
rect mode according to the current velocity of users’ hands. Hand’s
movement in each coordinate axis is scaled down when users move
their hands slower than a pre-defined threshold in that axis. We
used the threshold value proposed by the original authors. This
scaling results in an offset between the hand and the object being
manipulated, that can be canceled by moving hands faster than the
same threshold. We also included rotations later proposed by same
authors [Frees et al. 2007], which follows the same premise from
translations, scaling down slow wrist rotations. As suggested by the
authors, resulting offsets are represented by a white line for trans-
lations, and two sets of axis for rotations, as shown in Figure 5.
Similarly to 6DOF technique, both translations and rotations can
be performed simultaneously, as exemplified in Figure 3.

(a) Initial State. (b) Simultaneous scaled translation and
rotation, with accumulated offset.

Figure 3: PRISM Technique.

(a) Initial State. (b) Translation.

(c) Rotation.

Figure 4: Widgets Technique.

3.1.3 Widgets for DOF Separation

Widget based manipulations are widely used in mouse and key-
board 3D user interfaces. Our implementation, as opposed to those
described in sections 3.1.1 and 3.1.2, strictly follows DOF separa-
tion. Not only translation and rotation operations are treated inde-
pendently, users can only manipulate 1 DOF at a time. We used
a representation similar to that introduced by Conner et al. [Con-
ner et al. 1992], illustrated in Figure 4. Users can grab the sphere
connected to the desired axis and move the hand along the axis to
trigger object translation. For rotations, the approach is similar, but
the hand movement is performed around the target axis. The deci-
sion to either perform a translation or rotation, is made based on the
hand’s path after 10 cm. Selected transformation and axis remain
locked until a release gesture.

3.2 Methodology

All user sessions followed the same structure, each lasting approx-
imately 45 minutes. We started by introducing the experiment the
participant was about to perform, followed by a brief description of
the techniques being evaluated. The techniques were performed in
alternated order, assuring that each one was experienced in every
possible permutation, in order to avoid biased results.

For each technique we played a video showing how to apply trans-
formations to the object with it. After the video, participants had
a training period of three minutes, or less if they considered them-
selves to be already acquainted, to explore the approach in a ded-
icated environment, showed in Figure 5. Following the practice
period, we asked participants to perform six tasks, described in the
next section. After completing each technique’s tasks, participants
fulfilled a questionnaire regarding distinct aspects of the interaction.
The experiment concluded with a profiling questionnaire.

Initial pose Translation Rotation

Optional

G. Zachmann 106Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Task 6Task 5Task 4Task 3Task 2Task 1

Ti
m

e
(s

)

200

150

100

50

0

Widgets
PRISM
6DOF

Page 1

Figure 9: Time to complete the six tasks using the three techniques, in seconds. The graphic presents the median, first and third interquartile
ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Er
ro

r (
m

m
)

40

30

20

10

0

Widgets
PRISM
6DOF

Page 1

Figure 10: Position error attained in the six tasks using the three techniques, in millimeters. The graphic presents the median, first and third
interquartile ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Er
ro

r (
de

g)

20

15

10

5

0

Widgets
PRISM
6DOF

Page 1

Figure 11: Rotation error attained in the six tasks using the three techniques, in degrees. The graphic presents the median, first and third
interquartile ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Ti
m

e
(s

)

200

150

100

50

0

Widgets
PRISM
6DOF

Page 1

Figure 9: Time to complete the six tasks using the three techniques, in seconds. The graphic presents the median, first and third interquartile
ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Er
ro

r (
m

m
)

40

30

20

10

0

Widgets
PRISM
6DOF

Page 1

Figure 10: Position error attained in the six tasks using the three techniques, in millimeters. The graphic presents the median, first and third
interquartile ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Er
ro

r (
de

g)

20

15

10

5

0

Widgets
PRISM
6DOF

Page 1

Figure 11: Rotation error attained in the six tasks using the three techniques, in degrees. The graphic presents the median, first and third
interquartile ranges (boxes) and 95% confidence interval (whiskers).

Time-to-completion

Translational error

Optional

G. Zachmann 107Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Task 6Task 5Task 4Task 3Task 2Task 1

Ti
m

e
(s

)

200

150

100

50

0

Widgets
PRISM
6DOF

Page 1

Figure 9: Time to complete the six tasks using the three techniques, in seconds. The graphic presents the median, first and third interquartile
ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Er
ro

r (
m

m
)

40

30

20

10

0

Widgets
PRISM
6DOF

Page 1

Figure 10: Position error attained in the six tasks using the three techniques, in millimeters. The graphic presents the median, first and third
interquartile ranges (boxes) and 95% confidence interval (whiskers).

Task 6Task 5Task 4Task 3Task 2Task 1

Er
ro

r (
de

g)

20

15

10

5

0

Widgets
PRISM
6DOF

Page 1

Figure 11: Rotation error attained in the six tasks using the three techniques, in degrees. The graphic presents the median, first and third
interquartile ranges (boxes) and 95% confidence interval (whiskers).

Rotation error

Optional

G. Zachmann 108Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Optional

G. Zachmann 109Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The Action-at-a-Distance Principle

§ Is a general VR interaction design principle

§ Example: move objects in the distance

§ Idea: scale motion of hand such that on the screen (2D) the relative
position between the hand and the object does not change

§ Computations:

1. = distance obj — viewpoint at time t

2. = point on ray St with distance

3. = distance hand — viewpoint at time t

4. = distance hand — viewpoint at time t+1

5. Calculate such that

6. Calculate = point on ray St+1 with distance

7.Translation for the object =

StSt+1

d t
O

d t
H

d t+1
H

d t+1
O

d t
O

d t
H

=
d t+1

O

d t+1
H

P t

P t+1

P t+1 � P t

d t
O

d t+1
O

screen

G. Zachmann 110Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Image Plane Interaction

§ General idea: user does not interact with
3D objects, but instead with their 2D
image

§ "Image plane" selection metaphors:

§ Shoot a ray between thumb and forefinger

§ Shoot ray from eye through fingertip

§ "Lifting palm"

§ Frame the object with both hands

G. Zachmann 113Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Proprioceptive Interaction

§ proprius (lat.) = (adj.) self

§ Idea: utilize the fact that humans know exactly where their limbs
are, even with closed eyes

§ Metaphors derived from that:

§ "Real pulldown" menus: user reaches up,
makes grasping gesture,
then pulls her hand down
→ menu appears

§ Deleting objects: grasp object,
throw over the shoulder

§ Manipulate remote objects
by handheld proxy widgets
(= action-at-a-distance)

G. Zachmann 114Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

The World-in-Miniature Paradigm

§ Idea:

§ Use a 3D miniature "map"
(analogously to 2D mini-maps)
→ World-in-Miniature (WIM)

§ All interactions in and with the WIM
are mapped to the "real" VE

§ Attach the WIM to the non-dominant
hand

§ Object manipulation = grasp & move
the miniature object in the WIM

§ Navigation = move the frustum in the
WIM, or select a point in the WIM

G. Zachmann 115Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Video

Doug Bowman

G. Zachmann 116Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Example: Voodoo Dolls [1999]

§ Technique for remote manipulation / positioning of objects

§ Idea: create a temporary copy (= voodoo doll) of the remote
object

§ Task decomposition:

§ Create copy of the referenced object,
attach it to the left hand

- The original of that object will not be moved

§ Create copy of the object to be manipulated,
attach it to the right hand

- The original of that object will be moved

§ Movement of the voodoo doll
— relative to the copy of the reference object —
is mapped to the original

Optional

G. Zachmann 117Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ How to create the copy of the object to
be manipulated:

§ Use image-plane technique: make pinch
gesture "in front" of the object

§ Size of the copy ≈ size of the virtual hand

§ How to create a copy of the reference
object(s):

§ Use some framing technique (= image-
plane technique again)

§ Make copy of all objects within the frame

pinch copy attached
to hand

framing by circle

framing by rectangle

Optional

G. Zachmann 118Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Example of a manipulation:

1. User "grasps" table with pinch gesture of the left hand

2. System creates copy, attaches it to left hand, plus some other "context"
objects in the surroundings of that object (e.g., telephone and monitor)

3. User "grasps" telephone with right hand (pinch)

4. System creates copy of telephone and attaches it to right hand

5. User puts copy of telephone at some other place on the copy of the table

6. System maps the translation to the original telephone

Optional

G. Zachmann 119Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Advantages:

§ Left hand is being used exactly for what it was "designed"

§ User can work on different scales, without having to specify the scaling
explicitly

- The scaling happens implicitly by selection of the reference objects

Optional

G. Zachmann 120Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Magic Lenses

§ Idea: user sees a different version of the VE
through the magic lens

§ Where "different" could mean:
§ Other rendering parameters

§ Other geometry

§ Another viewpoint

§ Different scaling, ...

§ Examples:
§ Wireframe rendering

§ Magnification

§ Additional viewpoints (like magic mirror)

§ Geometry beneath the surface

§ Preview window for eyeball-in-hand or scene-in-
hand navigation

§ "X-Ray vision"

§ Magic lenses can also be specified by volume

G. Zachmann 121Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Videos

G. Zachmann 122Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Magic Lens for Medical Visualization

Digital ArtForms' iMedic

G. Zachmann 123Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

An Application in Scientific Visualization

§ Task:

§ Visualization of volume data (here, CT) on an iPad

§ Intuitive navigation (= specification of the viewpoint)

§ Solution: regard the iPad as a "magic lens" into the VE

Optional

G. Zachmann 124Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Relationship with Augmented Reality

§ In a sense, a magic window is an interaction metaphor that
works just like some of the augmented reality apps on tablets

§ (You might argue, a magic window implements "augmented virtual
reality")

WDR, Aktuelle Stunde, 23. 1. 2015

Optional

G. Zachmann 125Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Gimlenses: an Application in CAD Visualization

§ Gimlens = magic lens to specify cut-aways

§ Cut-away = truncated cone

§ Positioning by cone-shaped proxies

§ Implementation: fragment shader tests fragments against the cone

Optional

G. Zachmann 126Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Optional

G. Zachmann 129Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Redirected Walking

§ Walking in real space = very natural, intuitive navigation in VEs

§ Problem: virtual space can be much larger than the physical space, in
which the user is confined in the real world

§ Challenge: how to make large VE accessible without additional
navigation metaphors?

§ One solution:
"fence" in the VE
around user
before they hit
any real obstacles

Azmandian, Grechkin, Phan, Bolas, Suma

G. Zachmann 130Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Possible solution: "cheat" on user
§ Map distance of user's walking in real space to smaller/larger distance

of avatar in virtual space ⟶ translation gain
- Somewhat similar to the CD ratio

§ Map angles of user's turning in real space
to smaller/larger turning angles
of avatar in virtual space
⟶ rotation gain

§ Make mapping or change in
position/orientation unnoticeable to user:

1. Choose unnoticeable gains that create only
small deviations between virtual/real

2. Perform rotational/translational "jump"
during a saccade (needs gaze tracking in HMD)

3. Distract user, e.g., by suddenly appearing
objects (sign posts, birds, …)

G. Zachmann 131Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Video

Azmandian, Grechkin, Phan, Bolas, Suma

G. Zachmann 132Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Related Technique: Spatial Illusions

§ One possibility: self-overlapping architectural spaces

G. Zachmann 133Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Categories of Redirecting Users

§ Continuous redirection by translation and rotation gains

§ Discrete redirection by making the user reorient through specific
events, e.g., barriers or "distractors" (not shown here)

§ Redirection by changing the geometry of the VR

G. Zachmann 134Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Body Redirection: Passive Haptic Retargeting

§ Goal: provide rich passive haptic feedback with minimal physical
haptic props

§ Setting: HMD, tracked hand, seated user

§ Idea: apply redirection techniques to hand location and user
orientation

§ "Body warping" = redirect user's hand + slight avatar deformation

§ "World warping" = rotational gain

G. Zachmann 135Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Video

G. Zachmann 136Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

study incorporate adjustments similar to the redirection approach
but for head realignment for scenarios where the user is constrained
to a physical position such as when sitting in a stationary chair.

Also relevant to our work, Tanaka et al. [31] demonstrated the
use of guidance fields to encourage travel towards predetermined
target locations in a virtual environment. Our guided head rotation
technique uses a different type of rotational guidance by applying
minor rotational adjustments to realign users’ real world head to a
physical forward direction during seated VR experiences. The ro-
tational adjustments are similar to those used in washout filters for
motion simulation (e.g., [10, 34]). Motion platforms simulate mo-
tions to provide vestibular sensation during virtual acceleration, but
the platforms are limited in their ability to simulate continuous mo-
tion in any given direction. Washout filters can be used to gradually
return the orientation of the platform back to the neutral setting so
the platform will be better situated to simulate the next motion.

3 TECHNIQUES

Our research studies two semi-natural techniques for seated view-
ing: amplified head rotation and guided head rotation.

3.1 Amplified Head Rotation
In this research, we consider amplified head rotation as a technique
for semi-natural seated viewing because it allows 360-degree view-
ing of the virtual world using physical head rotations but without
requiring full physical rotations. The differences in rotation an-
gle of the tracked physical head is multiplied by an amplification
factor to produce the rotation angle of the virtual viewpoint. Fig-
ure 1 shows the basic concept. As previously mentioned, this type
of technique has been explored and studied by others using vari-
ous different implementations, displays, and amplification factors
(e.g., [15, 18, 21, 23, 38]).

Rather than use a constant amplification factor, our implementa-
tion used a dynamic amplification factor that scales based on phys-
ical head orientation. To do this, our implementation assumes a
real-world scenario with a preferred forward direction, such as you
might have while sitting on a couch or at a desk. The forward
direction can be set when starting the application. Our technique
dynamically calculates the amount of amplification based on the
difference between the direction designated as forward and the ori-
entation corresponding to the tracked head direction. Note that the
current study only amplifies horizontal rotation (i.e., yaw or head-
ing). Our implementation calculates the amplification factor using
the formula, a = 2�cos(h), where a is the amplification factor and
h is the heading difference between tracked HMD rotation and the
neutral forward direction. Using a, the virtual camera’s heading is
computed using q = h⇤a, where q is the angle of the virtual cam-
era, and h and a are as described above.

With this formulation, the amplification factor is small (close to
1.0) when the user is facing a direction close to the forward direc-
tion. Amplification increases as the user turns farther away from the
forward direction and reaches 2 when physically turned 90 degrees.
The rationale for this design was to allow viewing to feel natural
and normal when physically facing forward since this is likely the
most comfortable range for physical viewing. By increasing the
amplification for larger turns, it is possible for the user to virtu-
ally turn all the way around by only physically turning to the side.
Figure 2 shows the real world HMD angles and the corresponding
virtual camera angles calculated using the above formulas.

3.2 Guided Head Rotation
While amplified head rotation can allow 360-virtual viewing from
a seated position, its use in scenarios that do not afford body ro-
tation could lead to discomfort due to the neck being turned for
long periods of time, and continued rotation in the same direction
would be problematic. To address these limitations, we explored

Figure 1: A top-down diagram demonstrating amplified head rotation

shows the physical world and user’s head in black. The virtual world
and viewing direction are shown in blue. When the user physically
rotates away from the real-world forward direction, the virtual view
will have an amplified rotation based on the amplification factor.

Figure 2: A top-down diagram demonstrating the real world and vir-
tual yaw during amplified head rotation. The physical yaw angle is
shown in black and the virtual angle is in blue. The black arrow repre-
sents the physical forward direction. Note that the amplification factor
would continue to increase for physical rotation beyond 90 degrees,
but this is not common in a stationary seated position.

another semi-natural technique for seated viewing and travel. We
call this technique guided rotation. The technique uses the same
implementation of amplified head rotation as described in the pre-
vious section, and it adds realignment during virtual travel. The
technique employs an approach similar to that of washout filters
(e.g., [10, 34]), redirected walking (e.g., [8, 24, 29]), and redi-
rected walking-in-place implementations [25]. While traditional
redirected walking techniques guide the direction of users’ phys-
ical walking, our guided head rotation technique is responsible for
realigning a users’ head orientations as they virtually move (trans-
late) through the VR environment. As with our amplified head rota-
tion implementation, the realignment component of guided rotation
also uses the given real-world forward direction. If the user’s head
is turned before virtually moving to a new location in VR, the tech-
nique gradually adjusts the view during travel to encourage the user
to slowly physically rotate back towards the forward direction.

A straightforward approach to achieve this would be to apply a
constant rotational adjustment as a user moves in the virtual world
so that the user is always in the process of getting realigned towards
the forward direction. However, users reported sickness problems
with such constant adjustments during preliminary testing. The two
main reasons for sickness reported by the users were: (1) the sudden
change in the virtual camera’s heading when they started moving
virtually after being stationary, and (2) the proximity of the users to
virtual objects and structures (e.g., walls, tables, doorways) when
rotational adjustments were applied. Worse sickness was reported
when users moved closer to a virtual object.

To reduce the sickness created by these two issues, we decided to
interpolate the rotational adjustment value through an easing func-
tion. The easing function gradually increases the rotational adjust-
ment value to a maximum as the user starts moving and gradually

21

Amplified Head Rotation

§ Manipulates C/D ratio for user's head rotation

§ Remember the Go-Go technique for the user's hands?

§ Especially useful for seated VR experience

§ The technique:

§ User defines preferred forward direction ⟶ yaw angle = 0

§ Only yaw angle (rotation about vertical axis) is modified

§ Yaw angle (a.k.a. heading) is multiplied by factor (nonlinear):

where "r/v = yaw angle in physical/virtual space

✓v = (2� cos(✓r))·✓r

Optional

G. Zachmann 137Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Amplification with wash-out: gradually realign a user's head
orientation with the preferred forward direction as they virtually
move (translate) through the VE

Figure 3: A top-down view demonstrating realignment during virtual travel. The black content represents the physical world and user, and the
blue content represents the virtual world and user. The orange arrow shows the virtual path of travel. The images show three stages of travel
progressing from left to right (in order: a, b, and c). By gradually rotating the virtual world as the user travels along the virtual path (orange
arrow), the user is encouraged to rotate with the virtual rotation and ultimately faces the real-world forward direction (horizontal black line).

reduces it to zero as the user gets closer to virtual structures. To
do this, the technique needs to be aware of the distance between
the user and the nearest virtual structure along the user’s direction
of movement. This could be achieved by casting rays along the
horizontal plane from the virtual camera to find the closest virtual
structure and thereby its distance from the virtual camera. However,
since we are studying this approach for the first time, we chose to
test its general feasibility in more simplistic conditions with tighter
control on the realignment. So, the implementation for our study
maintains a set of known “areas of interest” (AOI) within the vir-
tual environment that serve as potential destinations. As the user
moves through the environment, the travel destination is dynami-
cally selected based on the direction of virtual movement towards
the closest AOI. The destination is selected by comparing the user’s
travel vector to the vectors from the user to nearby AOI. The AOI
with the smallest angle between the travel vector and the AOI vec-
tor is selected. For example, Figure 3 shows the target highlighted
in red is selected as the destination since it lies closer to the virtual
gaze direction, and the direction of virtual movement indicated by
the blue and orange arrows.

Once a destination is selected, the distance between the user’s
virtual position and the selected destination is input to the easing
function to calculate rotational adjustment values. A Catmull-Rom
spline [12] is used as the easing function in our implementation to
calculate a smoothly interpolated value between 0 and 1 using:

i = 0.5⇤ (a+b⇤ s+ c⇤ s2 +d ⇤ s3)

where s is the normalized proportion of distance covered by the user
from the latest starting point towards the destination,

a = 2⇤ p1,

b = p2 � p0,

c = 2⇤ p0 �5⇤ p1 +4⇤ p2 � p3 and
d =�p0 +3⇤ p1 �3⇤ p2 + p3,

where p0, p1, p2 and p3 are the control points that form the spline.
Our implementation used the values �1, 0, 1 and 0 for p0, p1, p2
and p3 respectively for the smooth interpolation. The input s varies
from 0 to 1 based on the distance covered between the latest starting
point and the midpoint between the starting point and the destina-
tion to get the i values that make the curve smoothly slope upwards
(see Figure 4). Once the user crosses this mid-point, s varies from
1 to 0 based on the distance covered between the mid-point and the
destination, making the curve smoothly slope downwards.

Figure 4: Guided rotation adds rotational adjustments following a
spline based on the virtual distance between from the starting po-
sition (0%) to the target destination (100%). Our evaluation used a
maximum adjustment of 10.8 degrees/second.

The interpolated values calculated using the above equations are
still normalized and are multiplied by a maximum rotational adjust-
ment value to get the rotational adjustment to be used for realign-
ment. In the implementation for our study, this maximum value was
10.8 degrees per second. So, the magnitude of rotational adjust-
ments starts at zero from the last stationary position, then gradually
increases towards the maximum value at the midpoint between the
previous starting point and the new destination, and then gradually
reduces back to zero as the user approaches the predicted destina-
tion as shown in Figure 4. During the virtual travel, if the user
changes the direction of movement and if the technique selects a
new destination, the user’s virtual position at the time of the des-
tination change is treated as the new starting point for rotational
adjustments to again start increasing from zero.

So, as the user travels virtually (e.g., by a technique such as joy-
stick steering, walking in place, or leaning), redirection is achieved
by gradually rotating the virtual world towards the physical forward
direction so that the user slowly turns in the same direction to main-
tain focus towards the intended virtual direction. In doing so, their
physical orientation is gradually eased towards the real-world for-
ward direction. The rotational adjustments for redirection are cal-
culated based on the direction of physical turning. For example, if
the head is physically turned clockwise from the forward direction,
the rotational adjustments would be applied to the virtual camera
in the counter-clockwise direction. Figure 3 shows the relationship
between real and virtual worlds using guided head rotation.

4 EVALUATION

We conducted a controlled experiment with two high-level goals
were: (1) to assess the general feasibility and usability of ampli-
fied head rotation and guided rotation for VR from a static seated
position, and (2) to study whether the techniques affected spatial
orientation as compared to a standard 360-degree baseline.

22

Optional

G. Zachmann 138Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Optional

G. Zachmann 139Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

System Control

§ The 3rd big category of interaction tasks in VR:

§ The somewhat unbeloved child in the VR interaction community

§ The general task of these interactions: change the system's state

- and everything else that doesn't fit anywhere else

§ Consequence: a taxonomy is almost impossible

§ Typical techniques:

§ Menus

§ Speech recognition

§ A set of gestures (for 1-out-of-n triggers)

§ Physical devices

Optional

G. Zachmann 140Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Menus

§ Task decomposition:

1. Bring up menu

2. Navigate the menu

3. Select an item

§ A possible taxonomy should contain:

§ Input modalities: gestures, speech, buttons, ...

§ Positioning of the menu

§ Selection of items

§ Dimension and shape of the menu

§ Examples for positioning the menu:

Optional

G. Zachmann 141Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Examples

§ Embedded in 3D or
2D overlay (heads-up)

§ Item selection: one of the earlier
selection techniques, e.g., ray casting
or occlusion technique,
or map relative hand
motion to "active"
menu item

§ Positioning:

§ Fixed in 3D,

§ Heads-up (moves with head),

§ Attached to left hand, …

Optional

G. Zachmann 142Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

2D Digression: "Marking Menus" (a.k.a Pie Menu)

§ Idea: arrange menu items around as center (in a
circle, square, ...)

§ With menu trigger: position its center at current
pointer position

§ Advantage:

§ Smooth transition from novice mode to expert mode

§ Experts can navigate the menu "blindfolded"

§ Mouse gestures (marks) are much more efficient
than a menu:

Optional

G. Zachmann 143Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Video (2D):

§ In 3D?

§ Direct "translation"→ "control cube"

§ Not too successful

§ Can you do it better?

[SecondLife]

Optional

G. Zachmann 144Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

A Few General Design Principles

§ Two-handed interaction

§ Action-at-a-distance

§ Proprioception

§ Task decomposition

§ Dimension decomposition

§ Multimodal interaction

Optional

G. Zachmann 145Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Two-Handed Interaction

§ Users have 2 hands: a dominant one (usually right)
and a non-dominant one (left)

§ The roles of each hand:

§ Non-dominant hand = reference coordinate system, positioning of context

§ Dominant hand = fine-skilled motor tasks within that context

§ Good metaphors = metaphors that utilize both hands within their
respective roles

§ Examples already seen: iSith, balloon, WIM, …

Optional

G. Zachmann 146Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Multimodal Interaction Categories

§ Single input:
§ Specialized:

- Single modality that is clearly
ideal and sufficient

- Ex.: Big red emergency button

§ Different but equivalent:
- User chooses one of several

modalities, each gives same
result

- Ex.: trigger an action by menu
or voice command

§ Sequential input:
§ User uses one modality to

trigger next modality

§ Ex.: Push-to-talk

§ Simultaneous input:
§ Concurrent:

- User issues different commands

- Ex.: point-to-fly while requesting info
using voice command

§ Complementary:
- Combined info from different

modalities gives one command

- Ex.: intersect object by ray while
saying "select"

§ Redundant:

- Different modalities convey same info

- Ex.: intersect cube with virtual hand
while saying "grab cube"

Optional

G. Zachmann 147Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Usability Heuristics for User Interface Design by Jakob Nielsen

1. Visibility of system status: always keep user informed

2. Users should always have full control and freedom: e.g., always
provide an emergency exit, undo, and redo

3. Recognition rather than recall: users should not have to
remember information from one part of the dialogue to another
⟶ always make actions and options visible

4. Cater to both novice and expert users, e.g., by accelerators that
are unobtrusive to the novice user

5. Aesthetic and minimalist design: don't show information that is
irrelevant or rarely needed (it competes with the relevant info)

§ …

Optional

G. Zachmann 149Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

A Taxonomy of Object Interaction TechniquesChapter 2. Related Work

Figure 2.2: The extended taxonomy of interaction metaphors considering input devices and the
realism of the metaphor. Some of the metaphors are more abstract (light blue) and
some use virtual hand models (dark blue).

new metaphors. For direct interaction metaphors, where the users manipulate objects directly
with their hands, the selection part of the metaphors is considered as grasping. Grasping has been
extensively studied in several research areas, such as robotics and character animation. These
grasping approaches are not necessarily related to the direct manipulation of virtual objects but
can provide techniques and methods that are inspiring for the realization of such techniques.
That is why they are discussed in a separate section that presents some of these approaches and
their applicability for direct interaction metaphors.

2.1.1 Abstract Interaction Metaphors

Exocentric and indirect metaphors are abstract metaphors that often are inspired by real human
behavior or tools but do not have a direct paragon in real human object interaction. Many
abstract object interaction techniques for virtual environments have been developed in the past
for various virtual applications with specific interaction requirements. Bowman et al. [BKLP04]
describe the most important approaches. Often these abstract techniques provide a very reliable
and efficient way to select and manipulate virtual objects. As mentioned before, interaction
metaphors can be distinguished to be exocentric or egocentric, according to the point of view
of the user. The most common exocentric technique is World-in-miniature [SCP95] where the
users hold a small copy of the virtual environment in their hands.

12

Mathias Moehring: Realistic Interaction with Virtual Objects Within Arm’s Reach

Optional

G. Zachmann 150Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Is More Fidelity Always Better?

Doug Bowman, JVRC'12

Optional

G. Zachmann 151Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Higher (interaction) fidelity often results in higher effectiveness

§ Increasing fidelity does not always improve user effectiveness
within a virtual environment (it does not decrease it either)

§ Very few cases where higher fidelity is detrimental

§ Travel techniques are one strong case for less fidelity

§ Best cases for high fidelity:

§ Difficult and complex visuo-spatial tasks

§ Learning / training

§ High-DOF interaction tasks

Optional

G. Zachmann 152Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

Tangible User-Interfaces

§ Idea: instantiate virtual/abstract interaction metaphors (handles,
icons, sliders, ...) by physical objects

§ Defintion Tangible User Interface (TUI):
An attempt to give physical form to digital information, making
"bits" directly manipulatable and perceptible by people.

Tangible Interfaces will make bits accessible through

§ augmented physical surfaces (e.g. walls, desktops, ceilings, windows),

§ graspable physical objects (e.g. building blocks, models, instruments),

§ ambient physical media (e.g. light, sound, airflow, water-flow, kinetic
sculpture).

Optional

G. Zachmann 153Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

§ Analogies between GUIs and TUIs:

§ Examples:

Tangible Magic Lens Tangible Slider

Optional

G. Zachmann 154Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

More (Artistic) Examples

Sandscape
(sand as terrain)

http://imve.informatik.uni-hamburg.de/
projects/GranulatSynthese

http://tangible.media.mit.edu

GranulatSynthese
(interactive art installation)

Optional

G. Zachmann 155Interaction MetaphorsVirtual Reality & Simulation 20 December 2017WS

IP Network Design Workbench
(use pucks for manipulation

of nodes and edges)

http://tangible.media.mit.edu/
projects/ipnet_workbench

Optional

